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Finite-amplitude solitary waves in water of arbitrary uniform depth are considered. 
A numerical scheme based on series truncation is presented to  calculate the highest 
solitary wave. It is found that the ratio of the amplitude of the wave versus the depth 
is 0.83322. This value is compared with the values obtained by previous investigators. 
In  addition, another numerical scheme based on an integral-equation formulation is 
derived to compute solitary waves of arbitrary amplitude. These calculations confirm 
and extend the calculations of Byatt-Smith & Longuet-Higgins (1976) for very steep 
waves. 

1. Introduction 
Since the time of Russell (1845), many approximate solutions for solitary waves 

have been obtained. Solutions in the form of an expansion in powers of the wave 
amplitude were derived by Rayleigh (1876), Korteweg & de Vries (1895), Keller 
(1948), Laitone (1960), Fenton (1972), Longuet-Higgins & Fenton (1974), Witting 
(1975) and others. On the other hand, direct numerical calculations were attempted 
by Yamada (1957), Lenau (1966), Yamada, Kimura & Okabe (1968), Byatt-Smith 
(1971), Byatt-Smith & Longuet-Higgins (1976), Witting (1981) and Witting & Bergin 
(1981). A review of some of these investigations can be found in Miles (1980). 

Most of these calculations are in good agreement for relatively small values of the 
wave height 

Here A is the elevation of the crest of the wave, measured from the undisturbed level 
of the free surface, and H is the undisturbed depth. 

However, some discrepancies appear as the wave of maximum height is approached. 
For example the following numerical values for the maximum amplitude k,, have 
been obtained: 0.827 f0.008 (Yamada 1957), 0.827 (Lenau 1966), 0.8262 (Yamada 
et al. 1968), 0.827 (Longuet-Higgins & Fenton 1974), 0.8332 (Witting 1981 ; Witting 
& Bergin 1981) and 0.8332 (Fox (1978), unpublished dissertation mentioned by 
Schwartz & Fenton (1982) and by Longuet-Higgins (1980)). 

I n  a recent paper Williams (1981) presented accurate computations for periodic 
gravity waves of maximum height. His algorithm could not explicitly compute 
solitary waves. However, he approximated a solitary wave by a long periodic wave, 
and obtained the value 0.833 197 for the maximum height. 

Accurate solutions for steep solitary waves were obtained by Longuet-Higgins & 
Fenton (1974) and Byatt-Smith & Longuet-Higgins (1976). Both calculations predict 

a = A / H .  ( 1 . 1 )  
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that  the highest solitary wave is not the fastest. However, the results predicted by 
these calculations do not agree for very steep waves (see figure 3). On the other hand, 
the results of Witting (1981) and Witting & Bergin (1981) agree with those of 
Byatt-Smith & Longuet-Higgins (1976). 

In this paper we present a numerical scheme based on series truncation to compute 
the solitary wave of maximum height. The method is akin to that of Lenau (1966). 
However, our results are more accurate, since we retain up to 100 terms in the power 
expansion, whereas Lenau retained only 9 terms. It is found that CZ,,,,, = 0.83322. 
This value is about 0.006 higher than the values obtained by Yamada (1957), Lenau 
(1966), Yamada et al. (1968) and Longuet-Higgins & Fenton (1974). On the other 
hand, it agrees to four places with the values obtained by Witting (1981), Witting & 
Bergin (1981) and Williams (1982). We also show that Yamada's (1957) scheme yields 
the value 0.833 when a sufficiently large number of mesh points is used. A similar 
result was found by Witting (1981) and Witting & Bergin (1981). 

In  addition, we present another numerical scheme based on an integral-equation 
formulation to compute solitary waves of arbitrary amplitude. The method is similar 
in philosophy, if not in details, to the scheme derived by Vanden-Broeck & Schwartz 
(1979). 

Following Longuet-Higgins & Fenton (1974) we introduce the parameter 

Here qc is the velocity a t  the crest of the wave and g is the acceleration due to gravity. 
The parameter w varies between 0 and 1 as the wave amplitude varies from zero to 
its maximum value. 

The numerical solutions of our integral equation differ from the results of 
Longuet-Higgins & Fenton (1974) for w > 0.92. On the other hand, they agree with 
the numerical results of Byatt-Smith & Longuet-Higgins (1976) for w < 0.96. 
Byatt-Smith & Longuet-Higgins also used an integral-equation formulation. However, 
they were not able to compute waves for w > 0.96, because too many mesh points 
were required to describe accurately the flow in the neighbourhood of the crest. In 
the present work this difficulty is avoided by concentrating the mesh points near the 
crest by an appropriate change of variable. This enables us to compute accurate 
solutions up to w = 0.99. An extrapolation of these results shows that cc+0.833 as 
w-t  1. This constitutes an important check on the consistency of our two numerical 
schemes. 

The problem is formulated in $2, and the highest wave is calculated i n  $3. In $4 
we compute solitary waves of arbitrary amplitude via an integral-equation formul- 
ation. The results are discussed in $5.  

2. Formulation 
We consider a two-dimensional solitary wave in an inviscid incompressible and 

irrotational fluid, bounded below by a horizontal bottom. We take a frame of 
reference with the x-axis parallel to the bottom and moving with the phase velocity 
c of the wave. The level y = 0 is chosen as the undisturbed level of the free surface, 
and gravity is assumed to act in the negative y-direction. 

We introduce the potential function $(x, y) and the stream function $(x,y). 
Without loss of generality, we choose $ = 0 a t  the crest and $ = 0 on the free surface. 
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We denote by Q the value of $ on the bottom. Then the undisturbed depth His given 
by 

H = &/c. (2.1) 

We introduce dimensionless variables by taking H as the unit length and c as the 
unit velocity. We choose the complex potential 

f = $+i$ (2.2) 

as the independent variable. 
We shall seek the complex velocity 

< = u-iw (2.3) 

as an analytic function off  in the strip - 1 < $ < 0. At infinity we require the 
velocity to  be c in the x-direction, so that the dimensionless velocity is unity in the 
x-direction. Therefore 5 must tend to unity at infinity. 

On the free surface, the Bernoulli equation yields 

Here a is the elevation of the crest and F is the Froude number, defined by 

(3.4) 

The functions u($) and w($) in (2.4) denote respectively u($, 0-)  and w($,O-). 
On the bottom, the kinematic boundary condition yields 

w = O  on $=-1 .  (2.6) 

This completes the formulation of the problem of determining the analytic function 
<. This function must tend to  unity a t  infinity, satisfy (2.4) on $ = 0, and (2.6) on 

Finally, let us mention that the asymptotic behaviour of u($)-iw($) as #+f co 
$ = - 1 .  

is described by Stokes' result 

u($)-iw($) - A e-""@l as #+ f m. (2.7) 

Here A is a complex constant to be found as part of the solution, and A is the smallest 
root of 

tan xA xA-- = 0. 
F2 

3. The highest solitary wave 
I n  this section we present a numerical scheme based on series truncation to 

compute the highest solitary wave. This wave is characterized by a stagnation point 
at the crest, where the surface makes a 120" angle with itself (see figure 1) .  Following 
Lenau (1966), we introduce the new variable t by the relation 

i. 
2 l + t  
7t l - t  

f =-log-- 

This transformation maps the flow domain onto the domain {I t 1 < 1,  Im t > 0) in 
the complex t-plane (see figure 2). The points $ = - co and $ = + co are mapped onto 
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FIGURE 1. Computed free-surface profile for the highest solitary wave. The vertical scale 
is the same as the horizontal scale. 

FIGURE 2 .  Flow configuration in the complex t-plane. 

the points t = - 1 and t = + 1 .  These points are labelled by the numbers 1 and 3 in 
figures 1 and 2. The crest of the wave and the point $ = 0, I) = - 1 are labelled by 
the numbers 2 and 4 in figure 1. They are mapped onto the points t = i and t = 0 
in figure 2. We use the notation t = re'", so that the free surface is described by r = 1, 
O < c r < R .  

Lenau (1966) derived the following expansion for the complex velocity [: 

where 
00 

Q ( t )  = A(1 - t y +  x a,,, ( P - 1 ) .  
n-0 

Here h is the smallest root of (2.8). The coefficients A and ai (i = 1 , 2 , 3 ,  ...) in (3.3) 
have to be found to satisfy the boundary condition (2.4). 

We solve the problem approximately by truncating the infinite sum in (3.3) after 
N terms. Differentiating (2.4) with respect to CT and using (3.1) yields 

(3.4) 

Here ii(g) = u[$(g)] and G(a) = u[$(a)] are the components of the velocity on the free 
surface. 

The functions G and 6, and their derivatives 2, and CU, are obtained in terms of 
A ,  h and ai (i  = 1 ~ . . . , N )  by substituting t = eiu in (3.2). We find the N +  3 unknowns 
A,  A ,  F ,  at (i = 1 ,  ..., N )  by satisfying (3.4) a t  the N + 2  mesh points 

a1 = .IT (&;) ( I= 1, ..., N + 2 ) .  
2 ( N + 2 )  (3.5) 
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N F N F 

9 1.28998 
15 1.29055 
30 1.29083 

50 1.29089 
75 1.29091 

100 1.29091 

TABLE 1 .  Values of the Froude number of the highest wave for various values of N 

Thus we obtain a system of N + 2  nonlinear algebraic equations. The last equation 
is obtained by imposing (2.8). 

This system of N +  3 equations for the N +  3 unknowns A, A ,  F, ui (i = 1 ,  . . . , N )  
was solved by Newton iterations. For most calculations the values a, = --i, ai = O  
(i = 2, ..., N ) ,  A = -0.32 and F = 1.3 were used as the initial guess. The method 
converges rapidly and a residual error of was obtained after 4 or 5 iterations. 
Furthermore, the coefficients ai decrease rapidly as i increases. For example 
u30 N 4 x lop5, u60 - 6 x alOO - lop8. It is interesting to note that good conver- 
gence was obtained without including Grant’s (1973) singularity in the expansion. 
As a check on our scheme, we plotted the values of log [z-  ($F$ eviKI4)g - i i P ]  versus 
log $ for various points on the free surface. The plotted points followed very closely 
a straight line of slope 1.5. This result is in agreement with Grant’s (1973) expansion. 

Numerical values of F for various values of N are shown in table 1. These results 
indicate that the value F = 1.29091 is correct to 5 decimal places. The profile of the 
wave is shown in figure 1. 

The highest solitary wave is characterized by u = v = 0 a t  the crest $ = @ = 0. 
Therefore (2.4) shows that the amplitude G,, of the highest wave is given by 

G,, = aF2 = 0.83322. (3.6) 

This value is about 0.006 higher than the values obtained by Yamada (1957), Lenau 
(1966), Yamada et al. (1968) and Longuet-Higgins & Fenton (1974). On the other 
hand, it agrees to four places with the values obtained by Witting (1981), Witting 
& Bergin (1981) and Williams (1981). 

Our numerical method differs from that of Lenau (1966) because we satisfy (3.4) 
a t  the mesh points (3.5) instead of solving for the Fourier coefficients. It is also more 
accurate because we retain up to 100 terms in (3.31, whereas Lenau retained only 9 
terms. 

As a further check on our calculations we repeated Yamada’s (1957) calculations. 
Yamada (1957) presented the value 0.827 f 0.008 obtained with 11 mesh points. With 
11 mesh points we also obtained 0.827. However, we obtain 0.832 with 30 mesh points 
and 0.833 with 100 mesh points. Thus Yamada’s (1957) scheme yields the same answer 
correct to  three figures when a sufficiently large number of mesh points is used. 

4. Numerical solution via an integral equation 
It is convenient to reformulate the problem as an integrodifferential equation by 

considering u-it,- 1 .  This function tends to zero a t  infinity. I n  order to satisfy the 
boundary condition (2.6) on @ = - 1 ,  we reflect the flow in the boundary @ = - 1 .  
Thus we seek u -iv- 1 as an analytic function off in the strip - 2  < @ < 0. 
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The values of u and v on the free surface $ = 0 and its image $ = -2 are related 
by the identities 

u($,O) = u($, -21, (4.1) 

v(g5,O) = -v(g5, -2).  (4.2) 

In  order to find a relation between u($,O) and ?J($, 0 ) ,  we apply Cauchy's theorem 
to the function u-iv-1 in the strip -2 < $ < 0. Using (4.1) and (4.2), and 
exploiting the bilateral symmetry of the wave about $ = 0, we obtain, after some 
algebra, 

1 ( s - $ ) ~ ( s ) + 2 [ u ( s ) - 1 ] d s  +Ao (s-$)2+4 

+.lo (s+$)2+4 (4.3) 
' "O (S+~)w(S)S2[u(s)-11]ds. 

The first integral in (4.3) is of Cauchy principal-value form. We shall measure the 
amplitude of the wave by the parameter w. Using the symmetry of the wave about 
$ = 0, we rewrite (1.2) in the form 

w = 1 -P[u(O)]2. (4.4) 

a = ; P + g ( w - l ) .  (4.5) 

Using (4.4) and (2.4), evaluated at $ = 0, we obtain 

For a given value of w, (2.4), (4.3) and (4.5) define a system of integral equations 

In order to solve these equations, we find i t  convenient to introduce the new 
for u($), v($), a and F .  

variable /3, instead of $, by the relation 

$=p ,  y > l .  (4.6) 

Therefore we rewrite (2.4), (4.3) and (4.5) in terms of p, u*(P, = u[$(P,] and 
V * ( P ,  = v[$CP,l. 

Next we introduce the M mesh points 

( I - l ) E  ( I =  1, ..., M), (4.7) 

where E is the interval of discretization. The change of variable (4.6) is chosen because 
i t  concentrates the mesh points near the crest of the wave. For very steep waves the 
value of y was taken as 3. 

We shall satisfy (2.4) and (4.3) a t  the points PI+; = +(/31+pI+1) ( I  = 1 ,  ..., M -  1) .  
Following Vanden-Broeck & Schwartz (1979), we obtain, after discretization, 
2M- 2 nonlinear algebraic equations for the 2M+ 2 unknowns a, F and u*(&), .*(PI) 
( I  = 1,  ..., M ) .  Relations (4.4) and (4.5) provide two more equations. An extra 
equation is obtained by imposing the symmetry condition 

w*(pl) = 0. (4.8 1 
The last equation expresses u*(PM) in terms of u * ( P M - l )  and u*(PM-,) by an 
extrapolation formula based on the asymptotic formula (2.7). The discretization of 
(2.4) and (4.3) follows closely the work of Vanden-Broeck & Schwartz (1979). 

The system of 2M+ 2 equations was solved by Newton iterations. 
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100 1.29141 100 1.29395 
120 1.29143 120 1.29152 
150 1.29145 150 1.29145 
180 1.29145 180 1.29145 

TABLE 2. Values of F when w = 0.98 and y = 3 

0.8 0.85 0.9 0.95 1.0- 
w 

FIQURE 3. The Froude number F as a function of w as given by the numerical scheme of $4 
(curve a) ,  Byatt-Smith & Longuet-Higgins (1976) (curve b )  and Longuet-Higgins and Fenton (1974) 
(curve c ) .  The cross corresponds to the highest wave calculated in $2. 

The most important source of error in the numerical scheme arises from the 
truncation of the infinite integrals in (4.3) a t  

s = = [ ( M -  1) El?. (4.9) 

We used two different methods to approximate the infinite integrals in (4.3). I n  
the first method, we used the asymptotic formula (2.7) to approximate the integrals 
between #,,,and infinity. This approach is similar to the method used by Byatt-Smith 
& Longuet-Higgins (1976). I n  the second method, we simply neglected the contribution 
of the integrals between #,,, and infinity. I n  this second method we also replaced 
the equation in which an extrapolation based on (2.7) is used, by a Lagrange 
extrapolation formula. Thus, the second method is completely independent of (2.7). 
Both methods were found to give accurate results. However, the first method is more 
efficient because accurate results can be obtained with #,,,ax relatively small. Most 
of the results presented in the next section were obtained by using the first method. 
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5.  Discussion of the results 
In the first calculation the iterations were started with the classical solution of the 

Kortewegde Vries equation. For w small the iterations converged rapidly. Once a 
solution was obtained it was used as an initial guess for a larger value of w ,  and 
so on. 

large enough for the results 
to be independent of E and q5,,,. This was achieved in the following way. For a given 
value of we decreased E progressively to  a value for which the results were 
independent of E ,  to the degree of accuracy desired. We repeated the procedure for 
larger and larger values of r$,,,, up to a value for which the results were also 
independent of q5,,,. This procedure is illustrated in table 2. 

In  figure 3 we present the numerical values of the Froude number F versus w. These 
results confirm that the highest solitary wave is not the fastest. We also show the 
results obtained by Longuet-Higgins & Fenton (1974), and by Byatt-Smith & 
Longuet-Higgins (1976). Our results agree with those of Longuet-Higgins and Fenton 
for w < 0.92, and with those of Byatt-Smith & Longuet-Higgins for w < 0.96. 

Byatt-Smith & Longuet-Higgins were not able to compute waves for w > 0.96 
because their numerical procedure uses equal increments in the velocity potential. 
This is not well suited to the calculation of very steep waves, because large curvature, 
low velocity and sparse point spacing are characteristic of the crest region. In the 
present work this difficulty has been avoided by concentrating the mesh points near 
the crest, the change of variable (4.6). 

Our results have thus confirmed the calculations of Byatt-Smith & Longuet-Higgins 
(1976) to a t  least three decimal places, and have extended them to still higher wave 
steepnesses, short of the maximum. For the limiting wave, our value for the wave 
height agrees with all the more recent calculations, to a t  least four decimal places, 
though disagreeing with Williams (1981) in the fifth. 

For each value of w we took E small enough and 

The authors are indebted to Professor P. G. Saffman for suggesting the calculation 
described in the last paragraph of $3. This research was sponsored by the United 
States Army under Contract DAAG29-80-C-0041. This material is based upon work 
supported by the National Science Foundation under Grant MCS-8001960. 
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